
Department of Computer Science
Honors Poster Presentation

12/06/2020

Katherine Braught and David Fernández-Baca

Acknowledgements: I would like to thank my mentor, David Fernández-Baca, for his guidance and
mentorship throughout this entire project. I would also like to thank his graduate student, Ghazaleh Parvini,
and Dan Gusfield for their helpful collaboration.

Generating Decisive Sub-matrices for Phylogenetic Tree Construction

A large problem when building phylogenetic trees is data
incompleteness. A significant amount of missing data can lead to
ambiguity in the structure of tree, leaving biologists unsure of the
accuracy of the tree. However, even with incomplete data, an
unambiguous phylogenetic tree can still be built depending on the
makeup of data. Data can be represented using a data availability
matrix which indicates whether sequencing data is available for a given
taxon at a given loci. Each row represents an organism, and each
column represents a loci.
Sanderson and Steele found that these matrices can be used to check if
an unambiguous tree can be built. They showed that if a matrix is
decisive, then you can confidently build a phylogenetic tree from that
data. However, if a matrix is indecisive, we can find a decisive
submatrix, which would correspond to a subset of organisms for which
we can build a phylogenetic tree. Checking decisiveness of a matrix is
equivalent to solving the no rainbow 4-coloring problem on the
matrix's hypergraph. We can formulate this NP-complete problem as
both an integer linear programming instance and satisfiability instance
for efficient solving in practice. Once we find a decisive submatrix, a
biologist can confidently construct a phylogenetic tree for those taxa.

Alexey Ignatiev and Antonio Morgado and Joao Marques-Silva(2018). PySAT: A
Python Toolkit for Prototyping with SAT Oracles.In SAT (pp. 428–437).
B. H. Dobrin, D. J. Zwickl, and M. J. Sanderson, “The prevalence of terraced
treescapes in analyses of phylogenetic data sets,” BMC
Evolutionary Biology, vol. 18, p. 46, 2018.
Parvini, G., Braught, K., Fernández-Baca, D.: Checking phylogenetic decisiveness in
theory and in practice (February 2020),
arXivpreprinthttps://arxiv.org/abs/2002.09722
Steel, M., Sanderson, M.J.: Characterizing phylogenetically decisive taxon coverage.
Applied Mathematics Letters23(1), 82–86(2010)

Background

SAT Formulation
To check for check for decisiveness, we formulate the no rainbow 4-
coloring problem as a SAT problem. We use the following constraints
and their corresponding Boolean formulas to check for a coloring. Let
𝑥𝑖𝑎 = 𝑡𝑟𝑢𝑒↔ 𝑥𝑖 has color a. 𝑥𝑖 represents one of the 𝑛 taxa.
(1) Each taxa has only 1 color.

(2) Each color appears at least once in the coloring.

(3) No loci is rainbow colored. Let 𝑘 be the number of loci and 𝑌𝑗 be the

set of all taxa who have data for loci 𝑗.

We also use an existing ILP formulation of the no rainbow 4-coloring.

Software Pipeline

We built a software pipeline that generates a decisive submatrix from
an indecisive data availability matrix. The pipeline works as follows:

while the matrix is not decisive:
1. add/remove rows using heuristic
2. Generate an ILP or CNF Boolean formula
3. Solve the formulation

We solve the ILP instances using the Gurobi ILP solver, a paid software
available under academic license. We tested several SAT solvers from
the PySAT library.

Results

Conclusion

References

Experiment
We ran the pipeline on real data provided by Dobrin, Zwickl, and Sanderson. The pipeline was always run on the same
computer with four cores and a Linux operating system with no background programs running. From these experiments,
we wanted to know:
1: Are the theoretical results feasible for use in practice?
2: What problem formulation should be used?
3: What heuristic yields the best sub-matrices?
The heuristics were tested were basic:
Remove method: Repeatedly remove a taxon that has the fewest number of non-zero entries until a decisive submatrix is
found.
Add method: Remove taxa as described in the remove method and add back sets of taxa in the powerset of initially
removed taxa until the largest decisive sub-matrix is found.
We ran four types of experiments: add method with ILP, add method with SAT, remove method with ILP, and remove
method with SAT.

Table 2: Timing and size results for all experiments

Table 1: Sizes of initial data sets Figure 1: Time to generate
submatrix using remove method

Timing Results
We tested several SAT solvers and found that Glucose 4 was generally
the fastest, so we use those results to compare to the ILP results.
We see that in most cases, ILP and SAT formulations run in comparable
time.
We also see that on smaller matrices, the add and remove methods run
in similar time, but more programs time out when using the add
method.

Size Results
The add method consistently produces larger decisive submatrices
when it finished. Several of the submatrices produced by the remove
method for organisms like fungi and chameleons were relatively large
submatrices.

Other Results
When analyzing the resulting submatrices, we saw that all the matrices
produced using the add method were trivial, meaning they all shared
one gene in common. Many of the matrices produced by the add
results were also trivial, but several were non-trivial. Some of the non-
trivial matrices had good coverage over several families of organisms.

Formulation
Use the SAT formulation in future software - SAT and ILP run in
comparable time, and SAT solving software is available open source and
free to anyone.

Heuristic
Avoid the add method – this method works poorly on large matrices,
runs slower, and produces trivial matrices.
Remove method shows feasibility – though remove method often finds
trivial matrices, it shows it is possible to find non-trivial submatrices
with good coverage using these ideas.

Future Work
Find a better heuristic – we need a theoretically backed way to choose
rows to eliminate to get more non-trivial results.

